A COVID-19 Model for January 2021

Glenn Ledder

Department of Mathematics University of Nebraska-Lincoln gledder@unl.edu

February 13, 2022

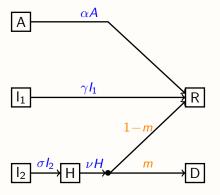
Key Differences from SEIR

- ► Some patients are asymptomatic, with lower infectivity and shorter infectious duration.
- We need to track hospitalizations.
- ► Public health policies can decrease infectivity, but in different ways for different classes.
- Vaccination is subject to supply limitations and administrative time delays.

Multiple Infectious Classes

- Asymptomatic (A)
 - Shorter duration, reduced infectivity, less likely to be tested
 - Always recovers
- Symptomatic (I₁)
 - Base duration and infectivity, more likely to be tested
 - Always recovers
- ► Pre-Hospitalized (I₂)
 - Base infectivity, more likely to be tested
 - Always becomes hospitalized
- ► Hospitalized (H)
 - Limited infectivity
 - Either dies (probability m) or recovers

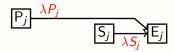
A PSEAIHRD Model – Multiple Infectious Classes



Infectivity Details

- We replace the factor I in the SEIR transmission rate formula βSI with an 'effective infective population' X. Without mitigation, $X = I + f_a A$, where $f_a < 1$.
- Testing
 - Isolation lowers infectivity from 1 (I) or f_a (A) to f_c
- Risk Reduction
 - Social distancing reduces contact rates of untested individuals (A and I)
 - Masking reduces infectivity of untested individuals (A and I)
 - Contribution of untested A and I individuals is reduced by a factor δ .

A PSEAIHRD Model – Transmissions



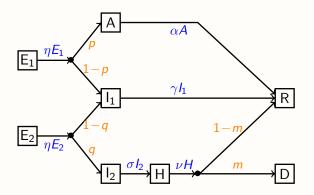
$$\lambda = \beta X, \quad X = f_c(c_i I + c_a A) + \delta[(1 - c_i)I + f_a(1 - c_a)A].$$

- $ightharpoonup c_i$ and c_a are the fractions of confirmed cases for symptomatic and asymptomatic infectives.
- $ightharpoonup f_c$, f_a are the infectivities of confirmed cases and asymptomatic cases, relative to an unconfirmed symptomatic infective.
- $ightharpoonup \delta$ is a 'contact factor' that incorporates social distancing and mask use for unconfirmed cases.

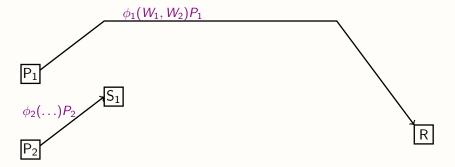
Multiple Risk Classes

- ► Low Risk (P₁, S₁, E₁)
 - Goes to asymptomatic A (probability p) or symptomatic I₁
 - Vaccination confers immunity
- ► High Risk (P₂, S₂, E₂)
 - Goes to prehospitalized I₂ (probability q) or symptomatic I₁
 - Vaccination decreases risk category
- ▶ We are neglecting other possibilities under the assumption that worse outcomes (vaccination doesn't do anything) roughly balance better outcomes (high risk becomes immune).

A PSEAIHRD Model – Transitions and Decisions

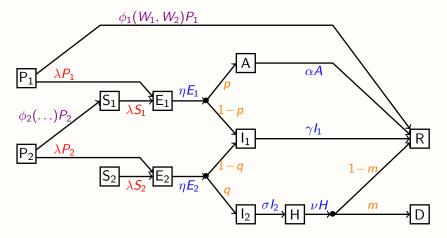


A PSEAIHRD Model – Vaccination



- $\phi_i(W_1, W_2)$ are rate 'constants' that depend on the status of the vaccination program.
 - W₁ and W₂ are the population fractions of low/high risk people waiting for vaccinated.

Full PSEAIHRD Model

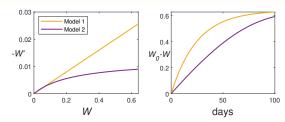


transitions, decision points, transmissions, vaccination

A Vaccination Model

- ▶ Let *W* be the fraction of people who want vaccination.
- Finding recipients for a vaccinator is like finding substrate for a biochemical enzyme (Michaelis-Menten* kinetics).
 - K is the level of W for which the rate is half of the maximum.
 - *V* is a vaccination rate constant (1/time).

$$W' = -\frac{VKW}{K + W} \equiv -\phi W, \qquad W(0) = W_0 = 1 - r.$$



Two-Class Vaccination Model

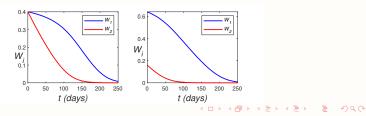
ightharpoonup au is high-risk fraction, r_j is fraction that refuses vaccination.

$$W_2(0) = (1 - r_2)\tau$$
, $W_1(0) = (1 - r_1)\tau$.

Assume the same model for high-risk as for the whole group.

$$W_2' = -\frac{V}{K + W_2} W_2 \equiv -v(W_2) W_2, \quad v(W_2) = \frac{V}{K + W_2}.$$

• Then $W_1' = W' - W_2' = \dots = -k(W)v(W_2)W_1, \quad k(W) = \frac{K}{K + W}.$



PSEAIHRD Vaccination Details

 \blacktriangleright We need ϕ_i for

$$P_j' = -\phi_j P_j - \lambda P_j.$$

We have

$$W_1' = -k(W)v(W_2)W_1, \qquad W_2' = -v(W_2)W_2,$$

$$v(W_2) = \frac{V}{K + W_2}, \qquad k(W) = \frac{K}{K + W}.$$

Therefore

$$\phi_2 = v(W_2), \qquad \phi_1 = k(W)v(W_2).$$

▶ We need only couple the W and W₂ equations to the PSEAIHRD system.

Pedagogical Resources

- See https://www.math.unl.edu/SIR-modeling for
 - Details on a classroom activity in disease modeling;
 - SIR and SEIR teaching modules using Excel and Matlab;
- See https://www.math.unl.edu/covid-module for COVID-19 teaching modules.
- Ledder and Homp, Using a COVID-19 model in various classroom settings to assess effects of interventions, PRIMUS 2021
 - https://www.tandfonline.com/doi/full/10.1080/10511970.2020.1861143
- ▶ Ledder and Homp, Mathematical epidemiology, in Mathematics Research for the Beginning Student Volume 1: Accessible Research Projects for First- and Second-Year College and Community College Students before Calculus, ed. E.E. Goldwyn, A. Wootton, S. Ganzell. Birkhauser, in press

Resource for Modeling and Analysis

- Ledder, Mathematical Modeling for Epidemiology and Ecology, 2ed, Springer, in press
 - 1. Modeling in Biology
 - 2. Empirical Modeling
 - 3. Mechanistic Modeling
 - 3.1 Transition processes
 - 3.2 Interaction processes
 - 3.3 Compartment analysis: The SEIR epidemic model
 - 3.4 SEIR model analysis
 - 3.5 Two scenarios from the COVID-19 pandemic
 - 3.9 Adding demographics to make an endemic disease model
 - 4. Dynamics of Single Populations
 - Discrete Linear Systems
 - 6. Nonlinear Dynamical Systems
 - Nullcline analysis and linearized stability analysis
- Shoot me an email to receive updates or offer feedback! gledder@unl.edu

