Parameterizing Epidemic Models

Glenn Ledder

February 2022

SEIR epidemic model



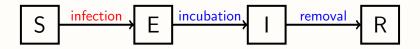
$$S' = -\beta SI$$

 $E' = \beta SI - \eta E$
 $I' = \eta E - \gamma I$
 $R' = \gamma I$

- ▶ Let N = S + E + I + R. Then N' = 0, so N is constant.
 - The R equation is not needed because R = N S E I.

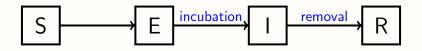
Processes

▶ Processes are either transmissions or transitions.



- Transmissions require interaction with another class.
 - Susceptibles are infected by Infectives.
- Transitions happen without any interaction.
 - Incubation of Latent individuals and removal of Infectious individuals happen spontaneously.

Processes – Transitions

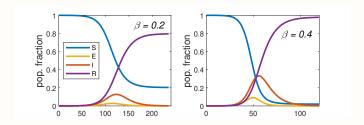


- Transition rates are (assumed to be) proportional to the leaving class
 - incubation rate = ηE
 - removal rate = γI
- Transition times are then exponentially distributed.
- ▶ Rate constants are reciprocals of average time in class.
 - Average removal time 10 days $ightarrow \gamma = 0.1$

Processes – Transmissions

- Transmission rates are proportional to the leaving class size
 - infection rate = force of infection $*S = \lambda S$
- The force of infection is proportional to the sum of the transmitting classes (just I for SEIR)
 - force of infection = βI
- ightharpoonup eta is the product of the encounter rate and transmission probability, neither easily measured.

How Does β Affect Outcomes?



- ▶ It changes the peak / value.
- ▶ It changes the final *S* value.

SEIR Final Size Relation

 \blacktriangleright We can relate S to R, independent of time.

$$\frac{dR}{dS} = \frac{R'}{S'} = \frac{\gamma I}{-\beta SI} = -\frac{1}{\mathcal{R}_0} \frac{1}{S}.$$

1. Integrate from time 0 to infinity and nondimensionalize:

• Let
$$s = S/N$$
, $r = R/N$, $s_0 = S(0)/N$, $r_0 = R(0)/N$.

$$\ln \frac{s_0}{s_\infty} = \mathcal{R}_0(r_\infty - r_0). \tag{1}$$

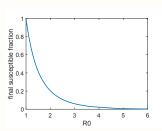
2. We can show that $e_{\infty}=i_{\infty}=0$, so $s_{\infty}+r_{\infty}=1$.

$$\ln \frac{s_0}{s_\infty} = \mathcal{R}_0(1 - r_0 - s_\infty). \tag{2}$$

SEIR Model - Final size relation

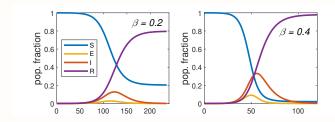
▶ Assume nearly everyone is susceptible, so $s_0 \approx 1$ and $r_0 = 0$.

$$\ln \frac{1}{s_{\infty}} = \mathcal{R}_0(1 - s_{\infty}). \tag{3}$$



► This works great if $\mathcal{R}_0 < 4$ and the epidemic ended without intervention. Then $\beta = \gamma \mathcal{R}_0$.

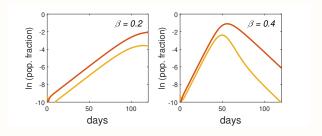
How Does β Affect Outcomes?



- ▶ It changes the peak / value.
- ▶ It changes the final *S* value.
- ► Maybe it does something we can't see in these graphs.

How Else Does β Affect Outcomes?

▶ Plot the logarithms of the infected populations *E* and *I*.



There is an extended period of exponential growth.

$$ln I = ln I_0 + \lambda t$$
, $ln E = ln I + ln \rho$

for some I_0 , ρ .

$$I=I_0e^{\lambda t}, \quad E=
ho I.$$

SEIR epidemic model – exponential phase

$$E' = \beta S_0 I - \eta E.$$
$$I' = \eta E - \gamma I.$$

With

$$E = \rho I, \quad I' = \lambda I, \quad E' = \rho \lambda I,$$

we get

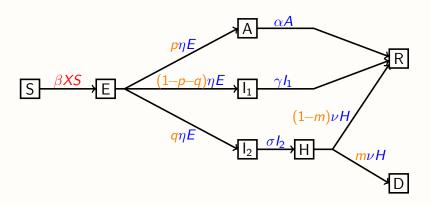
$$\beta = \frac{(\lambda + \eta)(\lambda + \gamma)}{S_0 \eta}.$$

The growth rate λ comes from the doubling time of class I:

$$\lambda = \frac{\ln 2}{t_d}.$$

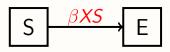
So the doubling time gives us β .

SEAIHRD Epidemic Model - March 2020 Scenario



transition rates, probabilities, transmission rates

SEAIHRD Transmission Details (March 2020)



$$X = f_c c_i I + \delta[(1 - c_i)I + f_a A]$$
 (4)

- c_i is the fraction of confirmed cases for symptomatic infectives.¹
- $ightharpoonup f_c$ and f_a are the infectivities of confirmed and asymptomatic cases, relative to an unconfirmed symptomatic infective.
- \blacktriangleright δ is a 'contact factor' that incorporates physical distancing and mask use for unconfirmed cases.

¹There was no testing of asymptomatic people in spring 2020, ≥ → ⋅ ≥ → ∞ ⋅ ∞

Transition Rate and Infectivity Parameters

- \triangleright η, α, γ, σ, ν are the reciprocals of the mean durations for classes E, A, I₁, I₂, and H.
- Best estimates from data for these times are
 - 5 days for incubation
 - 8 days for asymptomatic infectiousness
 - 10 days for symptomatic infectiousness
 - 6 days for transition to hospitalization
 - 8 days for hospitalization
- ▶ Best estimate for infectivity of asymptomatics is $f_a = 0.75$.

Probability Parameters

- An antibody study of a random sample of people estimated about 40% of asymptomatic cases, so p = 0.4.
- ▶ About 25% of hospitalized patients died, so m = 0.25.
- ► There is no direct data for the fraction of patients who required hospitalization.
 - One study estimated that roughly 1 of 11 total cases was confirmed by testing (counting both asymptomatic and untested symptomatics), with 12% of confirmed cases leading to hospitalization.
 - From this data, we can estimate that about 1.8% of symptomatic cases required hospitalization, so q = 0.018.
- ▶ The combination q = 0.018 and m = 0.25 results in a fatality rate of just under 0.5%, which would be 1.6M Americans, assuming everyone gets infected and there is no treatment.

β and Initial Conditions (and \mathcal{R}_0)

Assume exponential phase at start with hospitalization fraction H_0 .

$$\frac{dE}{dt} = \beta S_0 X S - \eta E, \quad E(0) = e_0 H_0;$$

$$\frac{dA}{dt} = p \eta E - \alpha A, \quad A(0) = a_0 H_0;$$
(6)

$$\frac{dA}{dt} = p\eta E - \alpha A, \quad A(0) = {}_{0}H_{0}; \tag{6}$$

$$\frac{dI_1}{dt} = (1 - p - q)\eta E - \gamma I_1, \quad I_1(0) = i_{10}H_0; \tag{7}$$

$$\frac{dI_2}{dt} = q\eta E - \sigma I_2, \quad I_2(0) = i_{20}H_0; \tag{8}$$

$$\frac{dH}{dt} = \sigma I_2 - \nu H, \quad H(0) = H_0; \tag{9}$$

$$X = I + f_a A \tag{10}$$

eta and Initial Conditions (and \mathcal{R}_0)

- ▶ Unknowns β , e_0 , a_0 , i_{10} , i_{20} can be given in terms of λ and the other parameters.
- ▶ A history of estimates for R₀:
 - December 2019: Published value of $\mathcal{R}_0 = 2.6$ based on statistical analysis of data from China.
 - January 2020 through March 2020: Numerous published values, most between 2.5 and 3.5, but one over 5.
 - o April 8, 2020: Value $\mathcal{R}_0 = 5.0$ published on UNL COVID modeling web page and used in teaching modules for Math 203 and elsewhere. Based on hospitalization data from New York City.
 - July 2020: 'Definitive' result $\mathcal{R}_0 = 5.7$ published by Los Alamos research group (Sanche et al similar method to mine, but better data).

Public Health Parameters

- ► The public health parameters are difficult to estimate and highly variable.
- ▶ The testing fraction for symptomatic patients c_i was probably in the range 0.1 to 0.6. This parameter is a good choice for a parameter study showing the impact of testing.
- ▶ The infectivity of isolation can only be guessed. I use $f_c = 0.1$.
- ▶ The contact factor δ is another good choice for a parameter study. Cell phone data suggests values from 0.2 to 0.6.

Some Conclusions

- Looking at data in different ways can yield insights that you might have missed.
- 'Nobody believes a model except the person who created it; everyone believes data except the person who collected it.'2
 We should be equally sceptical of models and data.
- ▶ It is often easier to measure a parameter by its effect than by direct measurement.
- ▶ If you get bad results from a good model, then at least one parameter value is wrong.

²Paraphrase of a quotation from Albert Einstein.